

GRM810NS_0C 规格书

日期: 2016/07/19

www.greenmcu.com

版本: V01

目 录

1、芯片概述	1
2、芯片特征	1
3、电气参数	1
4、原理及构成4	2
4.1 原理:	2
4.2 构成:	2
5、管脚图及说明	2
5. 1 管脚图:	2
5.2 管脚说明	3
6、I2C 通讯协议	4
6. 1 12C 协议说明	4
6. 2 读取 I2C 数据	4
6.3 发送 I2C 数据	5
7、特别说明	6
7.1 数据格式1	6
7.2 数据格式 0	
8、逻辑时序图	
9、单独作触摸芯片使用	7
10、应用设计	8
10.1 参考电路	8
10.2 按键选用原则	
10.3 抗干扰处理	
10.4 灵敏度选择	8
10.5 电源处理	8
11、封装说明	9
11.1 NSOP16 封装尺寸	9
12、订购信息	10
13 产品命名抑则	11

1、芯片概述

GRM810NS_0C芯片是专用触摸式按键信号处理芯片,能把不规则的触摸按键信号转换成稳定的代码输出。同时预留有如1628、1668(为方便起见,本说明中一律简称为16X8)可容易实现LED及数码管的显示。该芯片采用低功耗、高速的CMOS 技术,符合工业级标准,具有外围无元器件,稳定性好,抗杂波、抗静电能力强,对布线要求低等优点。可以实现最多10个触摸式按键的检测和输出,很容易进行接触式按键的替换。

2、芯片特征

- 电压范围: 3V~5.5V(-40℃~85℃)
- I/0 口配置:
 - 按键: 最多可连接 10 个触摸按键;
 - 通讯: 跟主机通讯,采用 I2C 协议,支持组合键;
 - 键按下一直发送,键抬起停止发送,主机可根据需要裁取单键或者连续键。
- 芯片优势:
 - 防水性能优良:
 - 抗干扰强,防辐射性能好;
 - 对电源要求不高,直接用 5V 供电;
 - 对布线要求不高;
 - 灵敏度通过外接电容设置;
 - 并行输出:简单,可靠,容易进行接触式按键的替换;
 - 产品符合 ROHS 标准;
 - 适应多种触摸介质;
 - 具有方便使用的 NSOP 封装。
- 市场反馈良好

该芯片自推出以来,广泛应用于电磁炉、油烟机、热水器、电水壶、面包机、压力锅等小家电,市场反应良好,尤其在防水、抗干扰及稳定性方面获得很高的评价。

3、电气参数

Supply Voltage	
Storage Voltage	50℃ to 125℃
Input Voltage	
Onerating Temperature	-40°C to 85°C

4、原理及构成

4.1 原理:

当人的手指触摸按键表面时,按键表面的电荷会发生改变,也就是说电路中的等效电容发生改变。GRM810NS_0C及其相应线路,对电容的变化量进行监测,采用先进的算法,对电容的变化量进行分析、处理以判断有无按键。

4.2 构成:

金属片通过一弹簧连接到检测电路上方覆盖一层介质(玻璃,塑料,PVC 材料等),但要紧密接触,人的手指通过该介质触摸按键,且灵敏度可调。

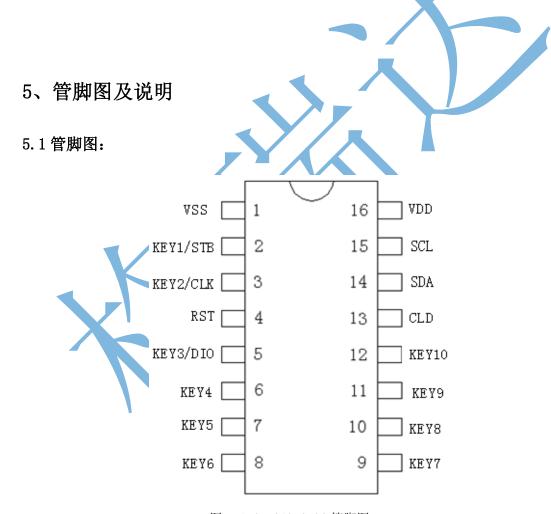
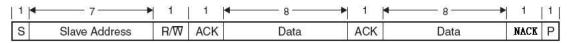


图 5-1 GRM810NS_0C 管脚图

5.2 管脚说明

脚位	管脚名称	说明
1	VSS	芯片电源负极
2	KEY1/STB	按键信号输出端口1/16x8的STB口
3	KEY2/CLK	按键信号输出端口2/16x8的CLK口
4	RST	复位口
5	KEY3/DIO	按键信号输出端口3/16x8的DI0口
6	KEY4	按键信号输入端口4
7	KEY5	按键信号输入端口5
8	KEY6	按键信号输入端口6
9	KEY7	按键信号输入端口7
10	KEY8	按键信号输入端口8
11	KEY9	接键信号输入端口9
12	KEY10	按键信号输入端口10
13	CLD	灵敏度调整电容接口
14	SDA	I2C数据口
15	SCL	I2C时钟口
16	VDD	芯片电源正极


表 5-1 GRM810NS_0C 管脚说明

6、I2C 通讯协议

6.1 I2C 协议说明

此芯片的I2C只能作为从机, I2C总线为双向两线结构。在读/写数据之前必须先由主机给从机发送地址命令,数据格式如下:

- 开始信号(S): 在SCL为高电平时,SDA由高电平转低电平;
- 地址 (Slave Address): 固定为"1100000"; 数据在传送时,高位在前;
- 读/写信号(R/W): "0"表示主控向触摸芯片写数据; "1"表示主控从触摸芯片 读数据;
- 应答信号(ACK): 在SCL为高电平时,SDA为低电平;
- 应答信号(NACK):在SCL为高电平时,SDA为高电平(注:在数据发送结束前);
- 数据(Data):表示要传输的数据。每个数据在传输时,都是高位在前,每个数据 传输完成后,都需等待应答信号,再进行下一数据的传输;
- 结束信号(P): 在SCL为高电平时, SDA由低电平转高电平;

注:在I2C通讯过程中,所有数据的改变,都必须在SCL为低电平改变,SCL为高电平时必须保持SDA数据信号的稳定。任何在时钟信号为高电平时,数据线上的电平变化,都被认为是起始信号或停止信号。

6.2 读取 I2C 数据

触摸按键的键值数据长度为2个字节,每1位代表1个按键。当有多个按键同时按下时对应位同时置1,例:K1,K2同时按下时,对应的数据为00000000 00000011B

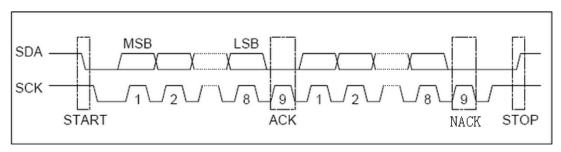

按键		DA	TA2						DA	ΓA1			
	Bit7∼4	Bit3	Bit2	Bit1	Bit0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
K1	0000	X	X	X	X	X	X	X	X	X	X	X	1
K2	0000	X	X	Х	X	X	X	X	X	X	X	1	X
К3	0000	X	X	X	X	X	X	X	X	X	1	X	X
K4	0000	X	X	X	X	X	X	X	X	1	X	X	X
K5	0000	X	X	X	X	X	X	X	1	X	X	X	X
К6	0000	X	X	X	X	X	X	1	X	X	X	X	X
K7	0000	X	X	X	X	X	1	X	X	X	X	X	X
K8	0000	X	X	X	X	1	X	X	X	X	X	X	X
К9	0000	X	X	X	1	X	X	X	X	X	X	X	X
K10	0000	X	X	1	X	X	X	X	X	X	X	X	X

表 6-1 按键值

注:有按键按下时,对应位为1,无按键时,对应位为0

当需要读取按键键值时,先发送"启始信号",紧接着发送"地址+读"命令"11000001",等待 I2C 应答后,向 I2C 读取键值数据,每 1 个数据为 8Bit。当要读取一串数据时,第一个数据读取完毕后,不要发结束信号,可以继续向触摸 IC 读取第二个 8bit 数据,之后同样发应答信号给 I2C,以此类推,直到所有数据都读取完毕后,发送结束信号。

I2C 数据传输图

6.3 发送 I2C 数据

当需要带显示时,需按照原理图要求,外接 16X8 显示驱动芯片,显示数据包括以下内容:

顺序	数据格式0	格式0内容	数据格式1	格式1内容
1	F0	头码	F1	头码
2	BUF1	数据 1	BUF1	数据1
3	BUF2	数据 2	BUF2	数据 2
4	BUF3	数据 3	BUF3	数据 3
5	BUF4	数据 4	BUF4	数据 4
6	BUF5	数据 5	BUF5	数据 5
7	BUF6	数据 6	BUF6	数据 6
8	BUF7	数据 7	BUF7	数据 7
9	BUF8	数据 8	BUF8	数据 8
10	BUF9	数据 9	BUF9	数据 9
11	BUF10	数据 10	BUF10	数据 10
12	BUF11	数据 11	BUF11	数据 11
13	BUF12	数据 12	BUF12	数据 12
14	BUF13	数据 13	BUF13	数据 13
15	BUF14	数据 14	BUF14	数据 14
16	config0	配置参数0	config0	配置参数0
17	Config1	配置参数1	Config1	配置参数1

表 6-2 驱动 16x8 发送数据 17byte 顺序

第16个Byte (config0)内容如下:

-: 非触摸键

Bit7=1: K8 触摸键使能

Bit6=1: K7 触摸键使能

Bit5=1: K6 触摸键使能

Bit4=1: K5 触摸键使能

Bit3=1: K4 触摸键使能

Bit2=1: K3 触摸键使能

Bit1=1: K2 触摸键使能

Bit0=1: K1 触摸键使能

注意: 默认为连续键

第17个Byte (config1)内容如下:

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7=1: K9 触摸键使能 Bit6=1: K10 触摸键使能

Bit5=1: 预留

Bit4~Bit3: 16X8 时显示模式,

Bit4	Bit3	显示模式
0	0	4位13段
0	1	5 位 12 段
1	0	6位11段
1	1	7位10段

Bit2~Bit0:灵敏度选择,非纯触摸由主机配置

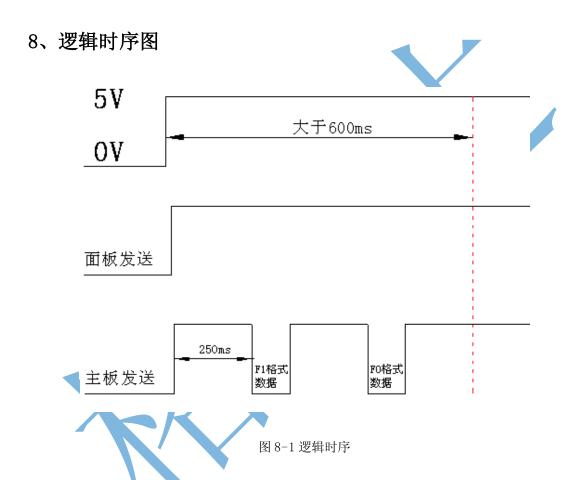
Bit2	Bit1	Bit0	灵敏度级别	备注
0	0	0	1	
0	0	1	2	
0	1	0	3	
0	1	1	4	1→8 灵敏度越
1	0	0	5	来越低
1	0	1	6	
1	1	0	7	
1	1	1	8	

当要向 I2C 发送显示数据时,先发送"启始信号",紧接着发送"地址+写"命令"11000000",等待 I2C 应答后,向 I2C 发送显示数据。当要向 I2C 发送一串数据时,第一个8Bit 数据发送完毕,收到 I2C 的应答信号后,可以继续向 I2C 发送第二个8Bit 数据,之后同样等待接收 I2C 应答信号,以此类推,直到所有数据都发送完毕后,发送结束信号。

7、特别说明

7.1 数据格式1

 $F1+BUF1+BUF2+BUF3+BUF4+BUF5+BUF6+BUF7+BUF8+BUF9+BUF10+BUF11+BUF12+BUF13+BUF14+\\+config0+config1$


F1 为复位命令,保证主板和面板间的通信同步。

发送这组数据时,只配置 config0、config1,其他值为显示数据;上电后面板收到此值,根据不同的显示配置,去配置 16X8 驱动芯片;在工作过程中,面板收到此值后复位,回到上电状态重新执行程序。

7.2 数据格式0

 $F0+BUF1+BUF2+BUF3+BUF4+BUF5+BUF6+BUF7+BUF8+BUF9+BUF10+BUF11+BUF12+BUF13+BUF14+\\+config0+\ config1$

正常显示数据

9、单独作触摸芯片使用

如果单独做触摸芯片使用时,不需要配置显示,上电 600ms 后,没有收到显示配置,则自动转为全部按键。

可通过 CLD 外接电容调节灵敏度,或者通过外部识别电阻调节。

10、应用设计

10.1 参考电路

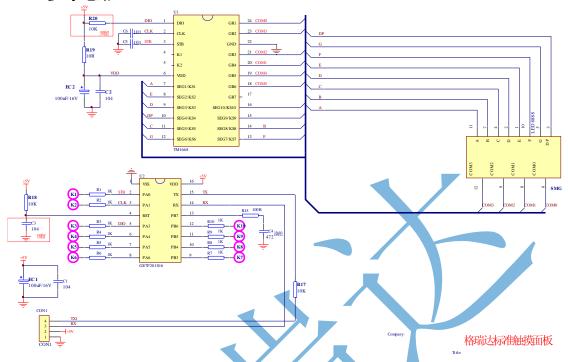


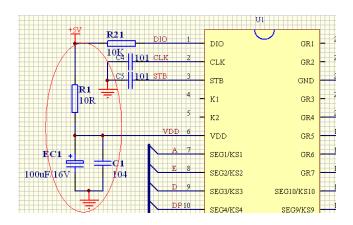
图7-1 GRM810NS_0B应用电路

10.2 按键选用原则

不使用的按键输入输出端口应空置不接任何器件。

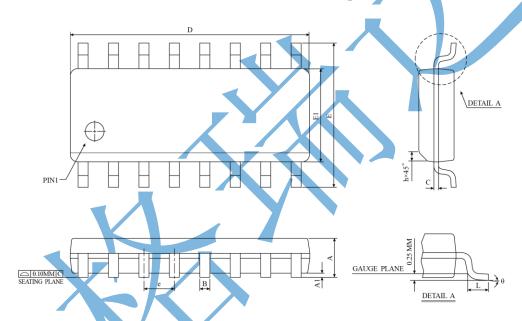
10.3 抗干扰处理

如果用户想提高抗干扰能力(如工作在对讲机等强干扰环境下),可通过在按键输入线上串接1K电阻(布板时应靠近触摸芯片)来实现,此时只会对有水时的灵敏度稍有影响,应重新设置灵敏度级别。


10.4 灵敏度选择

灵敏度是通过芯片的第13脚外接电容进行调节,电容可选的范围为102-103,电容越大,灵敏度越高,推荐使用472。(注:选用涤纶电容或NPO、X7R介质的电容)

10.5 电源处理


当显示面板带大电流驱动芯片时(如:1668、1628、1638、1629等),VDD会产生较大的纹波,为确定触摸MCU供电稳定,要求在触摸芯片VDD与显示驱动芯片VDD间串10欧电阻,并在驱动芯片的VDD上放置滤波电容,如图:

11、封装说明

11.1 NSOP16 封装尺寸

SYMBOL	DIMENSION IN MM		DIMENSION IN INCH	
SIMBOL	MIN	MAX	MIN	MAX
A	1.35	1.75	0.0532	0.0688
A1	0.10	0.25	0.0040	0.0098
В	0.33	0.51	0.013	0.020
С	0.19	0.25	0.0075	0.0098
D	9.80	10.00	0.3859	0.3937
Е	5.80	6.20	0.2284	0.2440
E1	3.80	4.00	0.1497	0.1574
e	1.27 1	BSC	0.050 I	BSC
h	0.25	0.50	0.0099	0.0196
L	0.40	1.27	0.016	0.050
θ	0°	8°	0°	8°
JEDEC	MS-012 (AC)			

 $\ \ \,$ *NOTES : DIMENSION " D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

12、订购信息

下单规格	功能简述	芯片型号	封装
GRM810NS_0C	触摸按键并行输出	GE7P201NS16	NSOP16

13、产品命名规则

产品名称构成: 如 <u>GRM</u> <u>8</u> <u>10</u> X <u>NS</u> <u>0C</u> <u>X</u>					
位置	内容	说明	代表意义		
1)	GRM	固定为 GRM	代表深圳市格瑞达实业有限公司		
2	8	随产品不同而变化	8 代表触摸系列产品		
3	10	随产品升级而变化	10 代表触摸芯片第七代产品		
4	X	触摸库版本	X代表X版本的触摸库		
(5)	NS	封装类型	S 代表封装类型为 SOP, NS 代表封装类型为 NSOP 无内容代表封装类型为直插		
6	_	下划线	连接符号		
7	OC	流水号	区分具体功能不相同的各种型号		
8	X	辅助识别符号	区分同一产品的某些差异		

深圳市格瑞达实业有限公司(总公司)

SHENZHEN GREENMCU TECHNOLOGY CO., LTD.

地址:深圳市福田区彩田南路海鹰大厦 20B 电话: (86) 755-83051793 82913392

(86) 755-82914749 82913502

传真: (86) 755-82971356 网址: www.greenmcu.com

深圳市格瑞达实业有限公司 (顺德办事处)

地址: 顺德区容桂镇文海西路保利百合花园 10 栋 B 单元 1901

电话: (86) 757-28302691 22909432

传真: (86) 757-28302691

最新信息请登陆我们的网址: www.greenmcu.com